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Abstract

The most commonly discussed measures of microstructure in composite materials are the spatial

correlation functions, which in a porous medium measure either the grain-to-grain correlations, or

the pore-to-pore correlations in space. Improved bounds based on this information such as the

Beran-Molyneux bounds for bulk modulus and the Beran bounds for conducticity are well-known.

It is first shown here how to make direct use of this information to provide estimates that always

lie between these upper and lower bounds for any microstructure whenever the microgeometry

parameters are known. Then comparisons are made between these estimates, the bounds, and

two new types of estimates. One new estimate for elastic constants makes use of the Peselnick-

Meister bounds (based on Hashin-Shtrikman methods) for random polycrystals of laminates to

generate self-consistent values that always lie between the bounds. A second new type of estimate

for conductivity assumes that measurements of formation factors (of which there are at least

two distinct types in porous media, associated respectively with pores and grains) are available,

and computes new bounds based on this information. The paper compares and contrasts these

various methods in order to clarify just what microstructural information and how precisely that

information needs to be known in order to be useful for estimating material constants in random

and heterogeneous media.
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I. INTRODUCTION

A wide array of results is available for practical studies of the linear elastic constants of

composite solid and/or granular materials, fluid suspensions, and emulsions. These results

range from rigorous bounds such as the Voigt [1], Reuss [2], Hill [3], and Hashin-Shtrikman

[4, 5] bounds to the fairly popular and mostly well-justified (for sufficiently small concentra-

tions of inclusions [6]) approximate methods such as the explicit approximations of Kuster

and Toksöz [7] and Mori and Tanaka [8, 9] and the implicit methods such as the differential

effective medium (DEM) method [10, 11] and the self-consistent [12, 13] or the coherent

potential approximation for elastic composites [14–17]. Older reviews [18] and both early

[19, 20] and more recent textbooks and research monographs [21–24] survey the state of the

art. So it might seem that there is little left to be done in this area of research. However,

continuing problems with applications of these methods have included lack of sufficient infor-

mation (such as the required spatial correlation functions [25–27]) needed to compute some

of the most accurate bounds known and the failure of some of the explicit methods to satisfy

the rigorous bounds in some limiting cases such as three or more constituents [28] or extreme

geometries such as disk-like inclusions [29]. The best implicit schemes, even though they are

known to be realizable and therefore cannot ever violate the bounds, are often criticized by

some workers [30] because the microgeometry generated implicitly by these methods does

not represent the true microgeometry with any obvious fidelity. Nevertheless, it has been

shown [31, 32] that knowing general features of the microgeometry such as whether one

constituent can be classified as the host medium and others as inclusions, or whether in fact

there is no one constituent that serves as the host can be sufficient information to decide

on a model that can then be used successfully to study a class of appropriate composites

[6, 31–34]. Some critics also point out that the iteration or integration schemes required

to compute the estimates for implicit schemes are sufficiently more difficult to implement

than those of the explicit methods that workers are often discouraged from trying these

approaches for this reason alone.

Virtually all of the improved bounds (i.e., improved beyond the now standard bounds of

Hashin and Shtrikman, which typically do not make direct use of microstructural information

except for the volume fractions) require some information about the microstructure. But

it has not been very clear just how precisely this information needs to be known in order
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for it to be useful. The present work will show for several examples how some general

knowledge of microstructure can be used in several different ways to generate estimates.

And since the predicted properties (at least in some cases) do not seem to depend too

strongly on details beyond those readily incorporated, it gives some confidence that the

methods can be successfully applied to real materials. One comparison we can and do make

is between bounds and estimates on elastic constants for random polycrystals of laminates

and the improved bounds and estimates based on spatial correlation functions for disk-

like inclusions. Although it is clear physically that these models should both apply at

least approximately to the same types of random composites for some ranges of volume

fractions, nevertheless the microstructure is assumed to be organized rather differently in

these two cases. The random polycrystal is an aggegrate of grains, each of which is a laminate

material. These laminated grains are then jumbled together with random orientations so

the overall composite is isotropic, even though the individual grains act like crystals having

hexagonal symmetry. For comparison, composites with disk-shaped inclusions must have a

microstructure that is at least crudely the same as the random polycrystal, since each layer

of an individual grain could be seen as approximately disk-like. So one quantitative question

we can ask is: How closely do these two models agree with each other, and if they are indeed

close in value, what do we learn about the sensitivity of elastic constants to microstructure?

Also, we might ask how this information affects engineering efforts to design [22, 35] new

materials?

Section II addresses these questions for elastic constants. Section III treats electrical

conductivity and related material constants such as dielectric constant, thermal conductivity,

and fluid permeability. Numerical examples are included in both sections. The final section

provides some discussion and our conclusions.

II. ELASTICITY: CANONICAL FUNCTIONS AND THE Y -TRANSFORM

A. Canonical functions Λ and Γ

To make progress towards our present goals, it will prove helpful to take advantage

of some observations made earlier about both rigorous bounds and many of the known

estimates for moduli of elastic composites [17, 23, 36, 37]. In particular, it is known [17]
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that if we introduce certain functionals — similar in analytical structure to Hill’s formula

for the overall bulk modulus K∗, which is

K∗ =

[

J
∑

i=1

vi

Ki + 4µ/3

]−1

− 4µ/3, (1)

valid when the shear modulus µ is a uniform constant throughout the medium. Here Ki is

the bulk modulus of the ith constituent out of J constituents, and vi is the corresponding

volume fraction, with the constraint that
∑J

i=1 vi = 1. This form is also similar to the form

of the Hashin-Shtrikman bounds [4, 5] for both bulk and shear moduli — many of the known

formulas for composites can be expressed simply in terms of these functionals. Specifically,

for analysis of effective bulk modulus K∗, we introduce

Λ(β) ≡
[

J
∑

i=1

vi

Ki + β

]−1

− β, (2)

while, for the effective shear modulus µ∗, we have

Γ(θ) ≡
[

J
∑

i=1

vi

µi + θ

]−1

− θ. (3)

Here µi is the shear modulus of the ith constituent out of J isotropic constituents. The

arguments β and θ have dimensions of GPa, and are always nonnegative. Both functions

increase monotonically as their arguments increase. Furthermore, when the argument of each

functional vanishes, the result is the volume weighted harmonic mean (or Reuss average) of

the corresponding physical property. Similarly, an analysis of the series expansion for each

functional at large arguments shows that, in the limit when the arguments go to infinity,

the functionals approach the volume weighted mean (or Voigt average) of the corresponding

physical property. We call these expressions the “canonical functions” for elasticity, as results

expressible in these terms appear repeatedly in the literature — although published results

are not necessarily manipulated into these canonical forms by all authors. The arguments

β and θ are called the “transform parameters.”

B. Rigorous bounds

Some of the rigorous bounds that are expressible in terms of the canonical functions for

the most commonly studied case of J = 2 are listed in Table 1. Functions and averages
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required as definitions for some of the more complex terms in the Table are:

Θ(K, µ) =
µ

6

(

9K + 8µ

K + 2µ

)

, (4)

and the expressions needed for the McCoy-Silnutzer (MS) bounds [38, 39], which are

X =
[

10µ2
V 〈K〉ζ + 5µV (2KV + 3µV ) 〈µ〉ζ

+ (3KV + µV )2 〈µ〉η
]

/(KV + 2µV )2,
(5)

Ξ =
[

10K2
V 〈K−1〉ζ + 5µV (2KV + 3µV ) 〈µ−1〉ζ

+ (3KV + µV )2 〈µ−1〉η
]

/(9KV + 8µV )2.
(6)

The averages 〈M〉 = v1M1 + v2M2, 〈M〉η = η1M1 + η2M2, and 〈M〉ζ = ζ1M1 + ζ2M2

are defined for any modulus M . The volume fractions are v1, v2, while ζ1, ζ2 and η1, η2

are the microgeometry parameters or Milton numbers [40, 41], related to spatial correlation

functions of the composite microstructure. The weights in these averages all satisfy v1+v2 =

1, ζ1+ζ2 = 1, and η1+η2 = 1. The Voigt averages of the moduli are KV = 〈K〉 and µV = 〈µ〉.
Considering symmetric cell materials: ζ1 = η1 = v1 for spherical cells, ζ1 = η1 = v2 for disks,

while ζ1 = (v2 + 3v1)/4 and η1 = (v2 + 5v1)/6 for needles.

Alternative bounds that are at least as tight as the McCoy-Silnutzer (MS) bounds for

any choice of microstructure were given by Milton and Phan-Thien [42] as

X̂ =
< 3µ >η< 6K + 7µ >ζ −5 < µ >2

ζ

< 2K − µ >ζ + < 5µ >η
(7)

and

Ξ̂ =
N

< 128/K + 99/µ >ζ + < 45/µ >η

, (8)

where

N =< 5/µ >ζ< 6/K − 1/µ >ζ +

< 1/µ >η< 2/K + 21/µ >ζ .
(9)

It has been shown numerically that the two sets of bounds (MS and MPT) using the trans-

form parameters X,Ξ and X̂,Ξ̂ are nearly indistinguishable for the penetrable sphere model

[43].

Note that “improved bounds” are not necessarily improved for every choice of volume

fraction, constituent moduli, and microgeometry. It is possible in some cases that “improved

bounds” will actually be less restrictive, than say the Hashin-Shtrikman bounds, for some
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range of the parameters. In such cases we obviously prefer to use the more restrictive bounds

when our parameters happen to fall in this range.

Milton [23, 36] has shown that, for the commonly discussed case of two-component com-

posites, the canonical functionals can be viewed as fractional linear transforms with the

arguments β and θ of the canonical functionals as the transform variables. In light of the

monotonicity properties of the functionals, this point of view is very useful because the

problem of determining estimates of the moduli can then be reduced to that of finding es-

timates of the parameters β and θ. Furthermore, properties of the canonical functions also

imply that excellent estimates of the moduli can be obtained from fairly crude estimates of

the transformation parameters β and θ. (Recall, for example, that estimates of zero and

infinity for these parameters result in Reuss and Voigt bounds on the moduli.) Milton calls

this transformation procedure the Y -transform, where Y stands for one of these transform

parameters (i.e., β and θ in elasticity, or another combination when electrical conductivity

and/or other mathematically analogous properties are being considered).

C. Estimation schemes based on bounds for elasticity

One very famous approximation scheme is due to Hill [3]. The idea is to take the known

Voigt and Reuss averages of the elastic system stiffnesses or compliances, and then make

direct use of this information by computing either the arithmetic or geometric mean of these

two limiting values. These formulas have been found to be very effective for fitting real data

in a wide variety of circumstances [44–46]. Clearly the same basic idea can be applied to any

pairs of bounds for scalars, such as the Hashin-Shtrikman bounds; or, for complex constants,

a similar idea based on finding the center-of-mass of a bounded region in the complex plane

could be pursued. The advantage of such approaches is that they can provide the user

with just one estimate per choice of volume fraction, while at the same time requiring no

additional information over that contained in the bounds themselves.

Hill’s concept clearly works just as well, and possibly somewhat better, if we apply it

instead — whenever we have an analytical function at our disposal as we do here in the

canonical functions — to the transform variables β and θ rather than to the moduli K and

µ directly. So one set of estimates we might test in our examples takes the form

βh ≡ 1

2
(β− + β+) and θh ≡ 1

2
(θ− + θ+), (10)
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where the bounds on β and θ were already given in Table 1, and the averages are just the

arithmetic means. The subscript h is intended to reference Hill’s contribution to this idea.

Another rather different approach (although still expected to give quite similar results)

is to examine the forms of the β and θ transform variables in order to determine if some

other estimate that lies between the bounds might suggest itself. One useful tool we can

introduce here is the weighted geometric mean. For example, if we define

µζ
G ≡ µζ1

1 µζ2
2 , (11)

it is well-known [47] that this is a geometric mean and it always lies between (or on) the

corresponding mean 〈µ〉ζ and harmonic mean 〈µ−1〉−1

ζ :

〈

µ−1
〉−1

ζ
≤ µζ1

1 µζ2
2 ≤ 〈µ〉ζ . (12)

So βG = 4
3
µζ

G is one natural choice to make for an estimate of the bulk modulus transform

parameter. This approach has one clear advantage over the usual self-consistent estimates

in that the microstructural information can easily be incorporated this way, whereas the

means of doing so for self-consistent methods usually involves more complicated calculations

via scattering theory [14, 29]. This approach also is explicit (it provides a formula for

direct substitution), rather than an implicit equation requiring an iteration procedure for

its solution — thereby eliminating another common criticism of implicit estimators.

Similar results are not as easy to find for the shear modulus bounds. The reason is that

there are either two or three averages that come into play for shear, always including 〈·〉ζ
and 〈·〉η, while the formulas (5) and (6) also depend on the usual volume averages 〈·〉. Since

it is known that the McCoy-Silnutzer bounds are never tighter than those of Milton and

Phan-Thien [41], we will consider only the Milton and Phan-Thien bounds from here on,

since they also have only two types of averages present.

In general ζi and ηi differ. But in some cases (spheres and disks, for example) they are the

same. Furthermore, it is easy to show that for any modulus M , we have the result (relevant

in particular to needles) that

〈M〉η − 〈M〉ζ = 1
12

[

〈M〉 −
〈

M̃
〉]

= 1
12

(v1 − v2)(M1 − M2).
(13)

Thus, the differences always vanish for 50−50 concentrations, and furthermore the factor of

1
12

reduces the difference further by an order of magnitude. If we make the approximation
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that 〈·〉η ' 〈·〉ζ, this is often a quite reasonable compromise. When this is so, we can then

choose to make the further approximations that

〈M〉ζ ' M ζ
G = M ζ1

1 M ζ2
2 , (14)

and also that
〈

M−1
〉

ζ
' M−ζ

G . (15)

Substituting these approximations into the Milton and Phan-Thien bounds (7) and (8), we

find that both transform parameters for the upper and lower bounds are replaced by the

same effective transform parameter:

θζ
G ≡ Θ(Kζ

G, µζ
G). (16)

This result provides a unique and explicit estimate that will always lie between these bounds.

A somewhat better (i.e., more balanced) approximation is achieved for ζi 6= ηi by defining

εi ≡ 1
2
(ζi +ηi). Then, all occurrences of 〈µ〉ζ, 〈µ〉η, 〈µ−1〉−1

ζ , and 〈µ−1〉−1
η are replaced by µε

G.

The errors introduced now through differences ηi − εi are half those in (13). But new errors

are introduced through the differences ζi − εi. The resulting geometric approximation turns

out to be

θ∗G = Θ(Kζ
G, µε

G), (17)

which still reduces to (16) whenever ηi = ζi. Also, if ηi + ζi = 1, then µε
G =

√
µ1µ2.

[Note: If ζi is known but ηi is not known (either experimentally or theoretically), Berry-

man and Milton [48] discuss how to use knowledge of ζi to constrain estimates of ηi. However,

we will not pursue this option here.]

To maintain internal consistency of the approximation, we can choose to set

β∗

G =
4

3
µζ

G, (18)

or we could choose instead to use βH from (10). However, we do not expect that these

choices will differ by very much for the bulk modulus estimates, and so (18) will be used in

our examples.

D. Elasticity for random polycrystals of laminates

In order to have a more precise model for comparison purposes, and to get a better feeling

for just how much difference it makes whether we model the microstructure very accurately
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or not, we will now consider a model material called a “random polycrystal of laminates.”

Suppose we construct a random polycrystal by packing small bits of a laminate material

(i.e., a composite layered along a symmetry axis) into a large container in a way such that

the axis of symmetry of the grains appears randomly over all possible orientations and also

so that no misfit of surfaces (and therefore porosity) is left in the resulting composite. If

the ratio of laminate grain to overall composite size is small enough so the usual implicit

assumption of scale separation applies to the composite — but not so small that we are

violating the continuum hypothesis — then we have an example of a random polycrystal of

laminates.

The analytical advantage of this model is that the layers in the grains can be composed

of the two elastic constituents in the composites discussed here previously. Furthermore, the

elastic behavior of the laminate material itself can be predicted using known exact methods

[49]. We will not dwell on the details here, but just make use of these well-known results to be

found in many publications [23, 50]. Then, the only explicit results needed in the following

are the Reuss and Voigt averages for the grains, which are 1/KR = 2s11 + 2s12 + 4s13 + s33

for Reuss in terms of compliances, or

1

KR − c13

=
1

c11 − c66 − c13

+
1

c33 − c13

, (19)

in terms of stiffness, and

KV = [2(c11 + c12) + 4c13 + c33] /9 (20)

for the Voigt average of bulk modulus. Similarly, the Voigt average for shear of the stiffness

matrix may be written as

µV =
1

5
(Gv

eff + 2c44 + 2c66) . (21)

This expression can be taken as the definition of Gv
eff . Eq. (21) implies that Gv

eff = (c11 +

c33−2c13−c66)/3. In fact, Gv
eff is the energy per unit volume in a grain when a pure uniaxial

shear strain of unit magnitude is applied to the grain along its axis of symmetry [51]. Then,

the Reuss average for shear is

µR =

[

1

5

(

1

Gr
eff

+
2

c44

+
2

c66

)]−1

, (22)

which is also a rigorous lower bound on the overall shear modulus of the polycrystal [3]. Gr
eff

is the energy per unit volume in a grain when a pure uniaxial shear stress of unit magnitude
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is applied to the grain along its axis of symmetry [51]. Each laminated grain has hexagonal

symmetry, so the product formulas 3Gr
effKV = 3Gv

effKR = ω+ω−/2 = c33(c11 − c66) − c2
13

are valid [51]. The symbols ω± stand for the quasi-compressional and quasi-uniaxial shear

eigenvalues for all the grains.

Once this notation has been established, then it is straightforward to express the

Peselnick-Meister bounds for hexagonal symmetry [52] as

K±

PM =
KV (Gr

eff + Y±)

(Gv
eff + Y±)

. (23)

for effective bulk modulus K∗ of the polycrystal, where

Y± =
G±

6

(

9K± + 8G±

K± + 2G±

)

. (24)

The precise values of the parameters G± and K± (being shear and bulk moduli of the

HS isotropic comparison material) were given algorithmically by Watt and Peselnick [46].

Similarly,

1

µ±

PM + Y±

=
1

5

[

1 − A±(KV − K±)

R±(KV − K±) + Gv
eff + Y±

+
2

c44 + Y±

+
2

c66 + Y±

]

, (25)

for the effective shear modulus µ∗ of the polycrystal. The meaning of Y± is the same in (23)

and (25). Here A± = −1
K±+4G±/3

, B± = 2A±

15
− 1

5G±
, and R± = A±/2B±. These bounds are of

Hashin-Shtrikman type, but were first obtained for hexagonal symmetry by Peselnick and

Meister [52] with some corrections supplied later by Watt and Peselnick [46].

Since we now have analytical forms for the bounds in (23)-(25), it is possible to make the

substitutions K± → K∗ and µ± → µ∗, as well as K±

PM → K∗ and µ±

PM → µ∗. Then, we

arrive at a new type of self-consistent estimate that will always lie between these rigorous

bounds.

E. Examples

Figure 1 provides some examples of elastic constant bounds and estimates for a system

having two constituents with K1 = 20, K2 = 50, µ1 = 4, µ2 = 40, all constants measured in

GPa.

The Hashin-Shtrikman (uncorrelated) bounds (HS±) are the outer most bounds for both

bulk and shear modulus. The Beran-Molyneux (BM±) bounds for bulk modulus and the
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Milton-Phan-Thien (MPT±) bounds for shear modulus — in both cases the shapes of the

inclusions are assumed to be disk-like — are the next bounds as we move inward. Then

the Peselnick-Meister (PM±) bounds for polycrystals of hexagonal grains are applied to

grains laminated so that their volume fractions of type-1 and type-2 are always the same

as that of the overall composite being considered here. These PM± lie strictly inside the

BM± and MPT± bounds. Then the inner most curve is the SC curve generated as described

here by using the analytical forms of the PM± bounds to construct self-consistent estimates

for the random polycrystal of laminates model. This SC curve is always inside the PM±

bounds and therefore inside all the bounds considered here. Finally, we have the geometric

mean estimates G, based on the improved bounds of BM± and MPT±. These estimates

always lie inside these bounds, but not always inside the PM± bounds. This result shows

that the BM and MPT bounds are allowing for a wider range of microstructures than are

the PM bounds, which is entirely reasonable under the circumstances. The main practical

observation however is that the PM±, SC, and G curves (both bounds and estimates) are in

fact all very close to each other (differing by less than 2% maximum for this high contrast

example). This fact suggests that any or all of these curves could be used when designing

new composites having preassigned elastic properties. The errors in these predictions would

likely be close to the experimental errors in the construction of such composites and therefore

negligible for practical purposes.

III. CONDUCTIVITY: CANONICAL FUNCTIONS AND ANALYTIC CONTNI-

UATION

A. Canonical function Σ

Another topic of broad and continuing interest in the field of composite materials is the

study of heterogeneous conductors, dielectrics, and — for porous media — fluid permeability

[19, 23, 24]. Because of the wide range of applications, including both thermal and electrical

conduction, and the theoretical interest in analysis of critical phenomena such as percolation

thresholds in resistor networks and localization [53, 54], this topic has surely been studied

as much as or more than any other in the field of heterogeneous media.

Many results in this field of research can also be expressed in terms of canonical functions.
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First define

Σ(σ) ≡
[

J
∑

i=1

vi

σi + 2σ

]−1

− 2σ, (26)

where σi is the conductivity in the ith component, and vi is the corresponding volume

fraction, again having the space filling constraint that
∑J

i=1 vi = 1. Hashin-Shtrikman

bounds [55] on conductivity for a multicomponent composite material can then be expressed

as

σ±

HS = Σ(σ±), (27)

where σ± are the largest and smallest values of the J isotropic conductivities present. These

bounds are generally improvements on the mean and harmonic mean bounds:

σM =
J

∑

i=1

viσi and σH =

[

J
∑

i=1

vi

σi

]−1

. (28)

Beran [19, 56] used variational methods to arrive at improved bounds on conductivity

for two-component media, again based on information in spatial correlation functions. His

results are also expressible in terms of the canonical functions as

σ+
B = Σ(〈σ〉ζ) (29)

and

σ−

B = Σ(〈1/σ〉−1

ζ ), (30)

where σ+
B (σ−

B) is the upper (lower) bound and the ζ averages are the same ones we introduced

here previously [following Eq. (6)]. Since some of the same measures of microstructure (in

this case the ζi’s) can be used to bound both conductivity and elastic constants, it has

been pointed out before that this fact and similar relations for other systems can be used to

produce various cross-property bounds [57, 58], thereby measuring one physical property in

order to bound another.

B. Estimation schemes based on bounds for conductivity

The fundamental ideas used earlier to obtain estimates of elastic constants by using the

analytical structure of the bounds (i.e., making informed approximations for the elastic

constants) can again be used for effective conductivity. The ideas are virtually the same,
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but somewhat easier to apply since we have only one constant to estimate, not two. Since we

are now dealing with the Beran bounds on two-component media that depend specifically

on the average 〈·〉ζ , we want to define again the geometric mean

σζ
G ≡ σζ1

1 σζ2
2 . (31)

Then we will have an estimator for a new transform variable that lies between the transform

variables of the rigorous bounds according to

〈

σ−1
〉−1

ζ
≤ σζ

G ≤ 〈σ〉ζ . (32)

The properties of the canonical function Σ guarantee that

σ−

B ≤ σ∗

G ≡ Σ(σζ
G) ≤ σ+

B . (33)

C. Conductivity for random polycrystals of laminates

For random polycrystals (see the earlier discussion of the basic model in Section II.D.),

it is most convenient to define a new canonical function:

ΣX(s) =

[

1

3

(

1

σH + 2s
+

2

σM + 2s

)]−1

− 2s, (34)

where the mean σM =
∑J

i=1 viσi and harmonic mean σH =
[

∑J
i=1

vi

σi

]−1

of the layer con-

stituents are the pertinent conductivities (off-axis and on-axis of symmetry, respectively) in

each layered grain. Then, the Hashin-Shtrikman bounds for the conductivity of the random

polycrystal are

σ±

HSX = ΣX(σ±), (35)

where σ+ = σM and σ− = σH . These bounds are known not to be the most general ones

since they rely on an implicit assumption that the grains are equiaxed. A more general lower

bound that is known to be optimal is due to Schulgasser [59] and Avellaneda et al. [60]:

σ−

ACLMX = ΣX(σ−

ACLMX/4). (36)

Helsing and Helte [61] have reviewed the state of the art for conductivity bounds and esti-

mates [62, 63] for polycrystals, and in particular have noted that the self-consistent estimate
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[or CPA (i.e., coherent potential approximation)] for the random polycrystal conductivity

is given by

σ∗

CPAX = ΣX(σ∗

CPAX). (37)

It is easy to show (37) always lies between the two rigorous bounds σ−

ACLMX and σ+
HSX ,

and also between σ−

HSX and σ+
HSX . Note that σ−

ACLMX and σ−

HSX cross when σM/σH = 10,

with σ−

ACLMX becoming the superior lower bound for mean/harmonic-mean contrast ratios

greater than 10.

D. Comparisons of conductivity bounds and estimates

We will now provide some comparisons similar to those presented in the previous section

for elastic constant bounds and estimates.

Now the Hashin-Shtrikman bounds (HSX±) for random polycrystals of laminates are

not always the outer most bounds for conductivity. The Avellaneda et al. (ACLMX−)

lower bounds are outer most (in comparison to the HSX− bounds) for high and low volume

fractions, but not for intermediate values of volume fraction. The Beran (B±) bounds for

conductivity assuming the inclusions are disk-like are outer (inner) most for low volume

fractions compared to the HSX bounds and then reverse roles at the high volume fractions.

The self-consistent or CPAX estimate always lies between the HSX± bounds but is a very

high estimator, having almost the same values as the HSX upper bounds. The Beran-based

geometric mean estimator G hugs the Beran upper bound at low volume fraction and the

Beran lower bound at high volume fractions and makes a smooth transition in between. But

the clear lack of monotonicity for this estimator makes us suspicious that its behavior in the

mid-range of volume fractions is not reliable.

The best results here are for the cases of very high or very low volume fractions. Then,

all the curves agree, and it is clear we could obtain very reliable estimates.

The problem with conductivity bounds and estimates is the wide range of contrast that

occurs in practice. Clearly, if we had chosen to use a smaller overall contrast, all the curves

would have been closer together. But a contrast of 100 is not at all unreasonable for realistic

systems. In fact, this may be not enough contrast to be a fair test. So we conclude that, even

though the formulations presented for conductivity bounds and estimates seem to be entirely

comparable to the ones shown before to be quite successful for elastic constant estimates, we
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must conclude that these same methods are not so useful for conductivity. Thus, we need

to try a different approach to achieve more reliable estimates for high contrast conductivity

estimates and bounds.

E. Analytical continuation methods

There are also other methods for conductivity/permittivity analysis. The Bergman-

Milton [64–71] analytical approach to understanding some general effective transport coef-

ficient — which we take for example to be σ∗ — of two-component inhomogeneous media

shows that

σ∗ = S(σ1, σ2) = σ1S(1, 0) + σ2S(0, 1) +

∫

∞

0

dyS(y)
1
σ1

+ y
σ2

, (38)

where S(1, 0) and S(0, 1) are constants depending only on the microgeometry and S(y) ≥ 0

is a resonance density functional also depending only on the microgeometry. The integral

in (38) is known as a Stieltjes integral [72]. This formula is typically derived and used for

the case of complex constants: σ1, σ2, and σ∗. But we will restrict consideration here – as

Bergman did in his early work [64] – to pure conductors so that σ1, σ2, and σ∗ are all real

and nonnegative.

A short derivation of (38) is instructive, so we will present one now.

Following (for example) Korringa and LaTorraca [69], we consider the defining equation

for the function Z(s)

σ∗ = σ1Z(s), (39)

where

s ≡ σ1/(σ1 − σ2). (40)

Then, Milton [67, 69] shows that

Z(s) = 1 −
N

∑

n=0

An(1 − sn)/(s − sn), (41)

where the sn’s are the locations of the poles, and are enumerated in increasing order. The

An’s are the residues. These real constants satisfy the following inequalties: 0 < An < 1,

0 ≤ sn < 1, and
∑

n An ≤ 1. Note that N might be a very large number in practice, so

that it may then be more convenient to think of turning this sum into an integral. Define a
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density functional

A(s) ≡
N

∑

n=1

Anδ(s − sn), (42)

where δ is the Dirac delta function. Then, (41) can be rewitten as

Z(s) = 1 − A0/s −
∫ 1

0

dxA(x)(1 − x)/(s − x), (43)

which is so far just a restatement of (41), assuming only that there exists a finite A0 for

which s0 ≡ 0. Substituting (40) into (43) and rearranging, we find

Z(s) = 1 − A0 + A0

σ2

σ1

−
∫ 1

0

dxA(x)
(1 − x)(σ1 − σ2)

(1 − x)σ1 + xσ2

. (44)

We can then symmetrize this expression by adding and subtracting the term xσ2 in the

numerator of the displayed ratio inside the integral. Then we can pull out another constant

and finally have the form we want:

Z(s) = [1 − A0 −
∫ 1

0

dxA(x)] + A0

σ2

σ1

+

∫ 1

0

dxA(x)
σ2

(1 − x)σ1 + xσ2

. (45)

Substituting this back into the original definition (39), we find the symmetrical result

σ∗ =
σ1

F1

+
σ2

F2

+

∫ 1

0

dxA(x)
1

(1 − x)/σ2 + x/σ1

, (46)

where 1 ≥ 1/F2 = A0 > 0 and 1 > 1/F1 = 1 − A0 −
∫ 1

0
dxA(x) ≥ 0, since

∑

∞

n=0 An =

A0 +
∫ 1

0
dxA(x) ≤ 1. The Fi’s are known as “formation factors” [73, 74].

This equation is not yet in the same form as (38), but it is nevertheless worthwhile to

pause for a moment to consider this form on its own merits. In particular, the first two terms

on the right hand side are exactly what is expected when conductors are connected in parallel

inside a complex conducting medium. And the remaining integral looks like some sort of

weighted average of conductors connected in series. The first physical analogy (conductors

in parallel) is entirely appropriate. The second one is no doubt an oversimplification of what

is happening in the medium, since the weights in the denominator (x and 1 − x) are not

really volume fractions (even though they do range from 0 to 1), and the density functional

A in the numerator also contributes important numerical weights depending on the local

shapes and interconnectedness of the microstructure of the conductors. This dependence

on microstructure would correspond approximately to the network connectivity in a resistor

network, but usually does not have a perfect analog for most 3D conducting composites.
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To complete the derivation of (38), we now need only to make the further substitution

x = 1/(1+y), where y ranges from 0 to ∞, and the definition S(y) ≡ A(x)/(1+x). Then, we

arrive at precisely (38), having found that S(1, 0) = 1/F1 and S(0, 1) = 1/F2. Furthermore,

taking the limit σ1 = σ2 = 1 = σ∗, we find the useful sumrule

1

F1

+
1

F2

+

∫

∞

0

dy
S(y)

1 + y
= 1. (47)

Clearly, other choices of the integral transform in (46) may also be useful. In particular,

taking instead x = 1/(1 − y) is a good choice in preparation for analysis of the resonance

density S(y) itself, as this transform places it most appropriately on the negative real axis.

But for present purposes either (38) or (46) is a satisfactory choice for study.

F. Formation factor bounds

In a porous medium, when σ2 = const and σ1 varies (as would be expected in a series of

electrical conductivity experiments with different conducting fluids — such as brines — in

the same pores), then general bounds can be derived from the form of (38). These bounds

(see [75] for the derivation) are given by

min(L1, L2) ≤ σ∗(σ1, σ2) ≤ max(L1, L2), (48)

where L1 and L2 are defined, respectively, by

σ∗(σ1, σ2) ≤ σ2 +
σ1 − σ2

F1

≡ L1(σ1, σ2), (49)

and

σ∗(σ1, σ2) ≥ σ1 +
σ2 − σ1

F2

≡ L2(σ1, σ2). (50)

If one of the σi’s varies while the other remains constant, L1 and L2 are both straight lines,

crossing when σ1 = σ2. We call (48) the formation factor bounds. One of them (always

the lower bound for conductivities) often provides nontrivial improvements over the Hashin-

Shtrikman and Beran bounds as we will now demonstrate by example.

Asaad [76] performed a series thermal conductivity measurements on three different sand-

stones. He also measured the electrical formation factor of each sample. This data set is

therefore most interesting to us. When the pores are filled with an electically conducting

fluid, current flows (in sandstone) mostly through the pore fluid because sand grains are

17



generally poor electrical conductors. When the pores are filled instead with air, heat flows

mostly through the sand grains because air is a poor thermal conductor. So the thermal

conductivity properties of samples is quite different from those of electrical conductivity.

But the microgeometry is still the same and, therefore, the structure of the equations for

thermal conductivity is exactly the same as in (38). For Asaad’s sandstone sample D, we

find that F D
2 = 3.72 (from thermal conductivity measurements) and F D

1 = 33.0 (from elec-

trical conductivity measurements). The porosity of this sample was φD = 0.126. With these

values known, we can make comparisons between and among the various theoretical results

available to us.

The uncorrelated Hashin-Shtrikman bounds (27) apply to this problem, as do the Beran

bounds (29) and (30). To apply the Hashin-Shtrikman bounds we need only the volume

fractions, but to apply the Beran bounds we also need some estimate of the ζi’s. Sandstones

having a low porosity like 0.126 might have fairly round grains, but the pores themselves

will not be well-approximated by spheres. So the common choice ζi = vi is probably not

adequate for this problem. A better choice is available however, since the values of ζi and ηi

have been computed numerically for the penetrable sphere model [24, 43, 77]. This model

microstructure is very much like that of a sandstone and, therefore, should prove adequate

for our present comparisons. For porosity v1 = 0.126, the penetrable sphere model has the

value ζ1 ' 0.472. Since both formation factors are known for these experimental data, the

formation factor bounds can also be applied without difficulty. Figure 3 shows the results.

(Note that the units of the conductivity have been normalized so all the curves cross at

unity on this plot in order to make the Figure universal.)

We will limit this discussion to the region σ1/σ2 ≥ 1. We find that the formation factor

upper bound is well above the Hashin-Shtrikman upper bound, which is above the Beran

bound as expected. All the bounds cross at σ1/σ2 = 1, as is necessary. The lower bounds

have more complicated behavior. The Beran lower bound is always superior to the Hashin-

Shtrikman lower bound, but they are both quite close together for all values of the ratio

σ1/σ2 > 1. Both bounds are also superior to the lower formation factor bound for values of

σ1/σ2 ratio close to unity. But, for higher values in the range σ1/σ2 > 12, these two bounds

become inferior to the formation factor lower bound. This result is expected since it is for

the asymptotic regimes (very high or very low ratios of the conductivities) that one of the

FF bounds tends to become an exact estimate. Neither the Hashin-Shtrikman lower bounds
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nor the Beran lower bounds can compete in this regime because they must allow for the

possibility that the more poorly conducting component plays host to the more strongly con-

ducting component. Measured formation factor values provide new information that largely

determines the status of this important long-range spatial correlation feature (due to the

presence or absence of such a host/inclusion arrangement) throughout the microstructure.

So at high contrast (σ1/σ2 � 1), the Beran upper bound and the formation factor lower

bound are the best (tightest) bounds for this sample sandstone D. The use of formation

factor bounds together with earlier bounds therefore seems to be a satisfactory solution to

the problems of high contrast estimation noted in the previous section.

IV. DISCUSSION AND CONCLUSIONS

The point of the paper has been to study how microstructure, and especially our knowl-

edge of quantitative measures of that microstructure, affects estimates of material constants.

For elasticity, we considered various improvements on the Hashin-Shtrikman bounds such

as the Beran-Molyneux bounds, the McCoy-Silnutzer bounds and the Milton-Phan-Thien

bounds. We found that knowledge of microstructure can be used very effectively to provide

improved bounds. New estimates can be formulated based on the analytical structure of the

bounds, and the microstructure parameters can be incorporated into these estimates in a

way so the estimates always satisfy the bounds. When making comparisons between models

based on disk-like inclusions in a host medium, and the random polycrystals of laminates

model, we found that these models predict very similar results when there is a relatively

small volume fraction of disks present. But when the volume fraction of disks is large, the

bounds do not constrain the results as well, and so there is still more work to be done

relating constants to microstructure in the mid-range of volume fractions.

For electrical conductivity and other related physical constants such as thermal conduc-

tivity, dielectric constant (and in some cases fluid permeability), the microstructure can be

introduced not only through the microstructure parameters as it was in the case of elasticity,

but also through the use of more global measures of microstructure such as the formation

factors. Global measures like the Fi’s that determine the long-range spatial correlations

(within our material object of study) by means of a fairly simple measurement are clearly

very advantageous and clearly more information of this type is desirable. The case of high
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contrast composites is very important for conductivity estimation and so formation factor

bounds provide one means of addressing this problem.

It was mentioned several times earlier that certain cross-property relations can be very

useful for bounding one physical quantity after measuring another. A possibility that has

yet to be explored is how the formation factor bounds on conductivity may provide useful

information about microstructure that can then be used to constrain further the elastic

behavior of the same system.
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Table 1. Various bounds on bulk and shear modulus can be expressed in terms of the

canonical functions Λ(β) and Γ(θ). Subscripts ± for β and θ are for upper/lower (+/−)

bounds. Subscripts ± for the elastic constants imply the highest/lowest (+/−) values of

the quantity present in the composite. Θ, X, Ξ, and the averages 〈·〉 and 〈·〉ζ are all

defined in the text. KR = 〈K−1〉−1
, µR = 〈µ−1〉−1

, KV = 〈K〉, and µV = 〈µ〉 are the Reuss

and Voigt averages of the respective moduli.

Bound β− β+ θ− θ+

HS [4, 78] 4
3
µ−

4
3
µ+ Θ(K−, µ−) Θ(K+, µ+)

BM [79] 4
3
〈µ−1〉−1

ζ
4
3
〈µ〉ζ

MS [38, 39] 1
6
X 1

6
Ξ−1

MPT [42] 1
6
X̂ 1

6
Ξ̂−1
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FIG. 1: Comparison of (a) the (uncorrelated) bounds of Hashin and Shtrikman (HS±), (b) the

microstructure-based bounds (assuming disk inclusions) of Beran and Molyneaux (BM±) for bulk

modulus and Milton and Phan-Thien (MPT±) for shear modulus, and (c) the random polycrystal

bounds of Peselnick and Meister (PM±) assuming that the composite is an aggregate of randomly

oriented laminated (hexagonal symmetry) grains. A self-consistent (SC) estimate based on the

Peselnick-Meister bounds lies between the PM± bounds for both bulk and shear moduli. A new

estimator (G) is based on the BM and MPT bounds and uses a geometric mean approximation in

order to incorporate information contained in the microstructure constants ζi and ηi.
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FIG. 2: Comparison of (a) the correlated bounds of Hashin and Shtrikman (HSX±) based on the

random polycrystal microgeometry, (b) the microstructure-based bounds (assuming disk inclusions)

of Beran (B±), and (c) the random polycrystal lower bounds of Avellaneda et al. (ACLMX−)

[60] for laminated (hexagonal symmetry) grains. The self-consistent (CPAX) estimate is also

based on the random polycrystal microstructure. A new estimator (BG) is based on the Beran

bounds, using a geometric mean approximation in order to incorporate information contained in

the microstructure constants ζi.

26



10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

σ
1
/σ

2

N
or

m
al

iz
ed

 C
on

du
ct

iv
ity

 (
σ/

σ 2)

FF−

FF+

B−

B+

HS−

HS+

FIG. 3: Comparison of (a) the uncorrelated bounds of Hashin and Shtrikman (HS±), (b) the

microstructure-based bounds (assuming penetrable spheres) of Beran (B±), and (c) the new for-

mation factor (FF±) bounds. Beran upper bounds are always the best. Beran lower bounds are

best for moderate to low values of the contrast ratio, but the formation factor lower bound be-

comes much superior in the high contrast regime σ1/σ2 > 12. For the sake of universality, units of

conductivity have been normalized so the curves all cross at unity.
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